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The motion of Brownian particles and sediment
on an inclined plate
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The gravitational settling of a homogeneous suspension of Brownian particles on an
inclined plate is considered. The hindered settling towards the wall and the viscous,
buoyancy-driven bulk motion of the sediment are considered assuming steady
conditions and accounting for the effects of Brownian diffusion, shear-induced
diffusion and migration of particles due to a gradient in shear stress. Generally, the
results show the development of a sediment boundary layer where the settling towards
the wall is balanced by Brownian diffusion at the beginning of the plate and by shear-
induced diffusion further downstream. Compared to previous results in the literature,
the present theory allows steady-state solutions for extended values of the plate
inclination and particle volume fraction above the sediment; upon reconsidering the
case with non-Brownian particles, a new similarity solution, with a stable shock in
particle density, is developed.

1. Introduction

An important task in separation technology is separation of the smallest biological
factors – proteins, viruses, antibodies, vaccines, etc. These particles are so small that
Brownian motion may affect the sedimentation process. In particular, the ability to
transport and remove sedimented particles along the walls of a centrifuge or a gravity
settling device will crucially depend on the degree of packing of the particles in the
sludge layer. Gradient diffusion of particles due to Brownian motion is in this respect
an advantage since it acts as to counteract the formation of high-particle-density layers.
In addition, if the sediment layer is not stationary but flows along the wall, yet another
diffusion mechanism is present due to the shearing motion of the suspending fluid. The
self-diffusivity of particles in a shear flow was first measured by Eckstein, Baile &
Shapiro (1977) by recurrent observations of a particular labelled particle of a
homogeneous, neutrally buoyant suspension. Gadala-Maria (1979) made observations
during shear of a suspension that was attributed to resuspension of a settled layer of
buoyant particles. The increased diffusivity of a scalar rather than the particles
themselves due to shearing of a suspension was addressed by Leal (1973). The
phenomena of shear-induced diffusion of particles have more recently been studied
extensively by Leighton & Acrivos (1986, 1987a, b), Schaflinger, Acrivos & Zhang
(1990), Davis & Sherwood (1990), Chapman & Leighton (1991) and Acrivos, Mauri &
Fan (1993). As variously described by these authors hydrodynamic interactions
between particles, as they are advected by the fluid, results in a random walk and drift
of particles perpendicular to the plane of shear. For particles of radius a in a fluid with
shear rate γd the effective diffusivity of this mechanism scales as a#γd . The relative
importance compared to Brownian diffusion is measured by the ratio a$µγd }kT where
µ is the dynamic viscosity of the suspending fluid.
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Nir & Acrivos (1990, hereafter referred to as N&A), consider gravitational
sedimentation and sediment flow on an inclined plate for the case of infinitely large
values of a$µγd }kT, i.e. when Brownian motion is absent. They show that in a certain
regime of the inclination angle and particle volume fraction far away from the plate,
steady-state boundary layer solutions exist for the sediment flow down the plate. If the
inclination angle is too small or the volume fraction is too small or too large, no steady-
state solution was found with their theory since maximum packing of particles
appeared at the wall and prevented the continuous transport of sediment. As pointed
out by N&A, an odd feature of their solution is that for vanishing particle volume
fraction in the suspension above the sediment, the thickness of the sludge layer grows
indefinitely and no steady-state solution is possible whatever slope is given to the plate.
Since for zero volume fraction there would be no sediment layer at all this seems
counterintuitive. The authors attribute this puzzling result to the limitations of the
model. One explanation could be (A. Nir 1996, private communication) that due to the
dense packing of particles formed adjacent to the plate at low ambient volume fraction,
the viscosity of the sediment is too high to allow any substantial shear rate
development for diffusion of the particles. Also, consideration of the transient problem
of a growing sediment layer would probably require progressively longer times to reach
a steady state as the ambient volume fraction is decreased, suggesting that the limit of
vanishing volume fraction results in a sediment of infinitesimal, increasing thickness.
In a recent paper by Kapoor & Acrivos (1995, hereafter referred to as K&A), the
inclusion of particle slip at the wall is also shown to eliminate this anomaly at the
beginning of the plate, by which a plug of constant concentration slips along the
inclined plate. Far from the leading edge, though, the slip velocity becomes weaker and
eventually reduces to zero.

In the present paper we consider a more elaborate model which includes Brownian
motion and, as recently also by K&A, a migration model for flows with shear stress
gradients. These desired extensions eliminate the anomaly experienced by N&A in
their case. Whereas most previous studies deal with flows for which a$µγd }kT( 1, the
present paper considers Pe! clet numbers a$µγd }kTC 1. Close to the leading edge where
the shear rate of the buoyancy-driven sediment-layer flow along the plate is weak,
Brownian diffusion is actually completely dominant. Far downstream, however, the
shear-induced diffusion of the accelerating sediment layer gradually takes over. The
downstream scenario sketched above is not always true though. If the sediment gets
sufficiently dense the shear rate close to the wall may be too small to suspend the
particles even far downstream. Brownian diffusion is then the only mechanism left that
prevents particles from attaining a state of maximum packing. The mechanism of
particle migration due to shear stress gradients included in our model is frequently
described in the literature (see e.g. Leighton & Acrivos 1987b ; Koch 1989; Schaflinger
1994) but is not accounted for by N&A. Note that the existence of different regions
along the plate, with various physical mechanisms emphasized, are also distinguished
in the study by K&A described briefly in the previous paragraph, although in our case
the picture is more complicated.

We also reconsidered the problem without Brownian motion. As the shear rate, and
thereby also the diffusivity for this case, approach zero in the outer part of the sediment
layer a shock in the particle volume fraction may form there. It was found that, for
reasons of stability, the shock construction must be modified in order to recover that
solution in the limit of vanishing Brownian motion for the extended formulation.
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2. Formulation

The settling of spherical particles of radius a is assumed to take place above a semi-
infinite two-dimensional flat plate at inclination angle φ to the horizontal as shown in
figure 1. Far above the plate we have a well-mixed homogeneous suspension with
constant particle volume fraction α

!
. The distance to the upper interface of the

suspension is infinitely large. We look for steady-state solutions of the ‘mixture
formulation’ (see Ishii 1975) of two-phase flow. If the local volume fraction of particles
is α, the density of the mixture is

ρ¯αρ
D
(1®α) ρ

C
, (2.1)

where subscripts C and D denote the separate, unmixed densities of the continuous and
dispersed phases respectively. Let j¯ ( j

x
, j

y
) and q¯ (u, �) denote volume-average and

mass-averaged flux densities of the mixture, given by
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where �
D

and �
C

are the separate velocities of the two phases, and let j
R

denote the
relative volume flux density of the dispersed phase defined by

j
R

¯ j
D
®α j. (2.3)

It then follows that j and q are related by

j¯q®
ε

1εα
j
R
, (2.4)

where ε is the relative density difference between the phases

ε¯ (ρ
D
®ρ

C
)}ρ

C
. (2.5)

The mixture fluid is effectively assumed Newtonian with an empirical law for the
relative viscosity as a function of the volume fraction of particles. Here, and
subsequently throughout the paper, we follow the terminology of N&A as closely as
possible and use

µ

µ
C
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¯ 0.58. (2.6)

For j
R

we postulate a constitutive law according to
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j
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. (2.7)

The first contribution is sedimentation due to gravity which for hindered settling based
on Stokes’ formula is given by

j
s
¯αf (α)U

s
, U
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¯
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9
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, (2.8)

where f(α)¯ (1®α)}µ
e
(α) (2.9)

describes the hindering effect of the particles at finite volume fractions. The second
term is diffusion of particles due to the mechanisms of shear-induced hydrodynamic
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F 1. Geometry and coordinate system.

interaction in uni-directional flow as proposed in the literature. In addition to shear-
induced gradient diffusion we include migration due to gradients in the shear stress,
τ
xy

, described by Leighton & Acrivos (1987b) and Schaflinger (1996), which yield

j
diff
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1
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xy

¥
¥y

τ
xy* , (2.10)

where γd is the shear rate. Approximate values of β and κ are

α(β)¯ "

$
α#(10.5 e).)α), κ(α)¯ 0.6 α#, (2.11a, b)

as given by Leighton & Acrivos (1986, 1987b) and determined from curve fits to their
experimental data. One may note that these data do not cover the range α" 0.5 for
which these coefficients, thus, are only speculative. The assumption of uni-directional
particle diffusion applies approximately here since we consider only parameter regimes
with a boundary layer character of the flow in the sediment layer.

The third term in (2.7) is gradient diffusion due to Brownian motion of the particles
which is given by

j
br

¯®D
C

f(α)¡Π¯®D
C

f(α)Π «(α)¡α, (2.12)
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where D
C

¯kT}6πµ
C

a is the Stokes–Einstein relation for the Brownian diffusivity in
the dilute limit and Π(α) is the non-dimensional osmotic pressure of the suspension.
Expressions for Π are given by Batchelor (1976) in the dilute limit :

Π
dil

(α)¯α(14α10α#…), α' 1, (2.13)

and by Woodcock (1981) in the dense limit :

Π
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For our purpose it will be sufficient to use a straightforward combination of these limits
in a formula for Π «(α) ;
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The last three terms of (2.15) constitute the dilute-limit approximation of ®Π!
den

.
Thus, (2.15) approaches the dilute-limit approximation for α' 1 and also captures the
singularity of the dense limit at α¯α

m
.

Note that, generally, the effective Brownian diffusivity of (2.12) would approach
infinity as the volume fraction approaches maximum packing. However, the particular
formula used for f (α) here coincidentally cancels the singular behaviour of Π «, so that
the effective Brownian diffusivity actually approaches a finite value at maximum
packing of the particles. This seems to be a coincidence and of no physical significance.
In fact, many other common formulas for the hindered settling function, f (α), do not
cancel the singularity of Π « as for example (1®α)'.&& as used by Auzerais, Jackson &
Russel (1988) in a similar model for transient settling of Brownian particles in one
dimension. Therefore, in the expression for j

br
, we make an exception and use

j
br

¯®D
C

(1®α)# (1®α}α
m
)#.&α
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(Ishii & Chawla 1979), instead of (2.12), whereas everywhere else f (α) is as given in
(2.9). This procedure keeps our model identical to that of N&A in those parts where
the same physical effect is described. Therefore, our results should vary from theirs
only due to the new physical effects included, i.e. those of particle migration due to
gradients in shear stress and Brownian diffusion.

Non-dimensional variables are introduced using U
s
, ρ

C
, µ

C
, ρ

C
gL as typical values

of velocity, density, viscosity and pressure and L is an, at present arbitrary,
characteristic length of the plate.

Conservation of mixture and dispersed-phase volume and the momentum balance
require respectively
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and D(α)¯ (1®α)# (1®α}α
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The non-dimensional parameters are
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With this scaling Λ
L

and Pe
L

measure the convective particle flux relative that due
to shear-induced and Brownian diffusion of particles respectively. Λ

L
also appears as

the ratio of buoyancy and viscous forces. Zero mixture and particle flux conditions
normal to the wall and no-slip conditions for the mixture fluid complete the
formulation.

Regarding the particular choice of the non-dimensional diffusivity, D(α), one might
think that the ability of the Brownian diffusion to prevent particles from reaching
maximum packing relies on the assumption of an infinite value of D(α

m
). However,

since the settling rate decreases rapidly at high concentrations this is not the case. To
see this, consider the one-dimensional model problem of a suspension settling due to
gravity towards a horizontal plate, assuming an initially homogeneous volume
fraction, α

!
, and an initial height, h

!
, of the suspension. One finds that the steady-state

solution as tU¢ yields an implicit relation for the volume fraction at the wall,
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, where Π
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(α) is the effective non-dimensional osmotic pressure

defined by Π!
e
(α)¯D(α)}f (α). A value of the volume fraction at the wall, α

w
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than the maximum packing limit, α
m
, can thus be guaranteed for any particle load if
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Using the definition of Π
e
(α) above, the corresponding criterion for D(α) with a given

choice of f (α) is then D(α)& const. f (α)}(α
m
®α). In our case f (α) from (2.6) and (2.9)

is such that maximum packing is prevented if

D(α)& const. (α
m
®α) as αUα

m
,

i.e. even diffusivities approaching zero at maximum packing may be sufficient.

3. Analysis

Λ
L

and the Pe! clet number, Pe
L
, are typically very large parameters indicating a

boundary layer character of the flow. As shown by N&A, for the case without
Brownian diffusion, the sediment will appear in a sublayer at the wall of thickness
δCLΛ−"/$

L
where buoyancy is balanced by viscous forces and inertia may be neglected

if Re
L
'Λ"/$

L
. For that case a similarity law exists for the sublayer and for which the

length of the plate, L, is completely arbitrary. In the present paper, as the effect of
Brownian motion is added, a new characteristic length, D

C
}U

s
, appears as the typical

thickness of an equilibrated layer of settled Brownian particles on a horizontal surface.
The Brownian and shear-induced diffusional particle fluxes on the inclined plate are
thus of the same order of magnitude if the length D

C
}(U

s
cosφ)C δCLΛ−"/$

L
, i.e. if the

Pe! clet number based on plate length

Pe
L
CΛ"/$

L
( 1, (3.1)

which is the parameter regime studied here. This implies a characteristic length of the
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plate L¯ a}(U
s
cosφa}D

C
)$ and no similarity law exists for the boundary layer. Inertia

is still negligible in the sediment sublayer if
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In analogy with the discussion by N&A this means that there will be an inertial outer
layer in the homogeneous part of the suspension where the momentum, produced in
the sediment layer, is brought to zero by viscous forces further away from the plate.
Outside the boundary layers there is a hydrostatic force balance in the bulk with a weak
secondary bulk flow due to the presence of the boundary layers. Here, we analyse only
the thinner sediment layer adjacent to the plate.

Balance of viscous and buoyancy forces in the momentum equation and the mixture
continuity equation imply that the magnitudes of the velocity components of the
mixture are uCΛ"/$

L
, �C 1 in the boundary layer. New boundary layer variables are

therefore introduced according to
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To lowest order, it then follows from (2.4) with (2.20) that
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so that in (2.20) we can replace u with j
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to lowest order. The same holds for the
momentum equation to lowest order with this scaling. The problem can then be
formulated in terms of x and α only. Accordingly,
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where (3.4d ) just states that P equals the ambient bulk pressure to lowest order. It
should be pointed out that the boundary layer approximation requires that φ(Λ−"/$

L
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or the scaling (3.3) is invalid ; a steady-state formulation of the problem for φCΛ−"/$
L

or smaller is thus not necessarily well posed. The boundary conditions are
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These equations, (3.4a–i), have no self-similar solution, as mentioned above, but
nevertheless it is convenient to introduce a stream function according to

Ψ¯ ξF(ξ, η), ξ¯R, η¯S}R"/$, (3.5)

where η is, except for a constant scaling factor, the similarity variable introduced by
N&A. The velocity components are then given by
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where from here on subscripts will be used to indicate partial derivatives. If inertia is
neglected the momentum equation (3.4c) to lowest order then reduces to
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and (3.4b) yields the conservation of particles that
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We also make the assumption Fηη " 0, which is confirmed by our results. The last
equation is then suitably combined with (3.7) :
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Thus, the shear-stress-induced migration mechanism does not appear as a diffusive
term in (3.9) but rather as a contribution to the sedimentation flux which is then
effectively smaller than αf (α). The no-slip and zero-flux conditions at the wall imply
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In the outer part of the boundary layer the volume fraction should adjust to α
!
in the

homogeneous suspension and the shear rate match the flow in the outer inertial layer
which to lowest order just require that

Fηη(ξ, ηU¢)U 0. (3.12)
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The boundary layer equations above were solved numerically through a marching
procedure down the plate, based on a scheme originally proposed by Harris &
Blanchard (1982) for compressible boundary layers. One observes that if it were not for
the last term in (3.9), due to Brownian diffusion, the equations would be of self-similar
form, which is actually the motivation for the ansatz (3.5). The factor ξ−"/$ in (3.9)
indicates that far downstream on the plate the flow might actually approach self-
similar behaviour. In fact, in the case of essentially non-Brownian particles the
characteristic length L, used here, is indeed a small distance and the self-similar form
of the equations would seem to be a good approximation. As we shall see, however, this
is not always the case.

For small values of ξ the boundary layer scaling (3.5) is not relevant and equations
(3.7), (3.9) are then not in an appropriate form to start the marching procedure at
ξ¯ 0. Close to the leading edge the departure within the boundary layer from the
ambient volume fraction is small and buoyancy forces a weak bulk flow balanced by
viscous forces in (3.4c) implying α®α

!
CDR}δ #, where δ is the boundary layer

thickness in this region. The divergence of the particle flux constitutes a balance of
convection with the bulk flow and Brownian diffusion, which is the overall dominant
diffusion mechanism close to the edge; thus from (3.4b)DR}RC 1}δ #. The ambient
sedimentation flux towards the wall is cancelled by Brownian diffusion at the wall
which by (3.4g) requires (α®α

!
)}δC 1. One finds then that δCR"/& and the

appropriate ansatz for R' 1 is
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An approximate solution can then be obtained through expansions of the type
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From descending orders of ξ "/& in the governing equations (3.7), (3.9) a system of
ordinary differential equations was derived for the unknown functions of (3.14) for
which the lowest-order balance equations are given by
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After evaluation of the two-term expansion solution, (3.14), at a small but non-zero
value of ξ, it was transformed into the original coordinates, (3.5), and then continued
by the marching procedure for the full equations (3.7), (3.9). The results generally
adjusted smoothly with the expansion solution if the transformation point was chosen
at a distance ξ% 0.0001 depending on the particular case studied and were insensitive
to the transformation point at larger values of ξ.

4. Discussion

We present results for two different cases here. In the first case we let κ¯ 0, i.e.
particle migration due to gradients in shear stress is neglected. The shear-induced
diffusion model is then identical to that of N&A and novel effects are expected only
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F 2. Boundary layer profiles of (a) mixture velocity, DR, and (b) particle volume fraction,
α, versus S for the case κ¯ 0 at x¯ ξ¯ 0.01, 0.1, 0.5, 1.0 ; α

!
¯ 0.1, φ¯ 45°.

due to Brownian diffusion. The migration model, with κ1 0, is included in the second
case which differs from the study by K&A in that they allowed particle slip at the wall
but no Brownian diffusion of particles.

Figure 2 shows the boundary layer profiles, versus S, of the mixture velocity, DR, and
particle volume fraction at various positions at the beginning of the plate for 45°
inclination angle and α

!
¯ 0.1 in the case κ¯ 0. Figure 3 shows the development

further downstream; the boundary layer coordinate is here that defined in (3.5) and the
mixture velocity is plotted as Fη ¯DR ξ−#/$. Close to the leading edge Brownian
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diffusion markedly dominates over the shear-induced diffusion with a characteristic
exponential type of decay of the volume fraction away from the wall. Further
downstream, as the boundary layer grows, shear-induced diffusion progressively
overtakes as the dominant mechanism. However, in the outer part of the boundary
layer, where the shear rate approaches zero, Brownian diffusion is still dominant and
smooths the steepening profile of the concentration. The profile is truly smooth at the
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boundary layer edge even for large, finite ξ, but the relative strength of the diffusivity
is then so small that this structure is not visible in figure 3. In order to capture the very
narrow shock structure at the edge of the boundary layer the numerical scheme uses
a local refinement of the grid, following the location of the boundary layer edge.

The development of the wall-shear rate at α
!
¯ 0.1 is shown for various inclination

angles in figure 4. For large enough inclination angles the scaled shear rate, Fηη(ξ, 0),
asymptotically approaches a constant value far downstream which indicates self-
similarity of the solution. If the inclination angle is too small, self-similarity is not
approached, as can be seen for the lowermost curve in figure 4. However, a steady
boundary layer solution is still available for the values of ξ considered in our
computations.

A comparison of the boundary layer profiles at α
!
¯ 0.1 for two values of φ, one of

which does, and the other does not, allow approach to self-similarity far downstream,
is shown in figure 5 at ξ¯ 10*. At 45° inclination angle a substantial amount of shear
is present in the near-wall region and Brownian diffusion is here essentially negligible.
In this situation self-similarity is approached for large ξ. At 20° inclination angle,
however, the body force on the sediment along the plate is not large enough to
reproduce the shear rate required to counteract the packing of particles just by shear-
induced diffusion. The sediment is then very close to maximum packing (α

m
¯ 0.58) at

the wall with high viscosity and low shear rate. Brownian motion of the particles is here
of vital importance since that alone apparently prevents them from reaching maximum
packing. Further out in the boundary layer, where the shear rate is appreciable, shear-
induced diffusion is also still the dominant mechanism for this smaller inclination
angle. With these different balances within the layer self-similarity is not approached
for large ξ and the boundary layer grows much faster than for the self-similar cases at
larger inclination angles.

An insight into the particle flux balance at the wall may be obtained from (3.11) if
Fηη at the wall is expressed from the result of integrating (3.7), through the boundary
layer and also f (α) is taken explicitly from (2.9) :

1

µ
e
(αrη=!

) (α(1®α)*

#
tanφβ(α)&

¢

!

(α®α
!
) dηαηξ−"/$µ

e
(α)D(α)αη* )

η=!

¯ 0. (4.1)

Close to maximum packing, as the effective viscosity is large, the hindered settling
velocity of the particles and the shear rate of the mixture are small. It then becomes
clear that when φ is not large enough for the second term to balance the first one in
(4.1), the last term may do so even if ξ−"/$ is small. This effect is augmented by the
diverging Brownian diffusivity at maximum packing but the above conclusion holds
independently of this fact. As already discussed in §2 Brownian diffusion may prevent
packing at α

m
even if the diffusivity, under certain restrictions, were to approach zero

as αUα
m
. Therefore, any choice of D(α), satisfying a restriction such as that given in

§2, is expected to give results of roughly the same nature. Although the boundary layer
growth, for cases of no self-similarity, have been found to grow much more rapidly, if
for example, D(α

m
) is finite rather than infinite as here, the overall qualitative picture

is similar.
As a check on our computations for κ¯ 0 we compared the results far downstream

on the plate with the self-similar solution obtained by N&A. Qualitatively the
comparison was favourable but quantitatively the disagreement in boundary layer
thickness or velocity and volume fraction at the boundary layer edge were up to 50%
as for example shown (dashed) for the case in figure 3. This obviously requires
comment. A typical feature of the self-similar solution is that it involves a kinematic
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shock construction at the edge of the boundary layer. In our computations, this is not
necessary since there will always be a small, but non-zero, diffusivity from the
Brownian motion present that produces a continuous shock structure in its place.
Apparently, the limit of very small diffusivity does not recover the expected self-similar
solution found by N&A. One may see why this is so from the following physical
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F 6. The drift flux curve, α f (α), and the shock construction of the similarity solution. The
dashed line indicates the shock construction used by N&A.

reasoning regarding the particle flux normal to the shock interface. For a non-diffusive
solution, particle continuity across the steady shock requires

αδ( f (αδ)Fδ)¯α
!
( f (α

!
)Fδ), (4.2)

where α
!

and αδ are the volume fractions on the upper and lower sides of the shock,
Fδ is the downward fluid velocity normal to the shock and f (α) is the hindered particle
velocity relative to that. Graphically (4.2) requires the slope of the secant between
(α

!
,α

!
f (α

!
)) and (αδ,αδ f (αδ)) on the drift flux curve in figure 6 to be ®Fδ. Considering a

diffusive model problem, with a ξ-independent artificial diffusivity ν' 1, for which the
volume fraction varies continuously between α

!
and αδ, the particle flux balance within

the shock structure is

α ( f (α)Fδ)ν
dα

dη
¯α

!
( f (α

!
)Fδ) ; α

!
%α%αδ, (4.3)

where νdα}dη is the diffusive particle flux (towards the wall). Since α decreases away
from the wall the diffusive term is negative since the diffusivity, ν, is always a positive
quantity. This with (4.3) and secondly by (4.2) implies the inequality

α f (α)&α
!
f (α

!
)®(α®α

!
)Fδ ¯α

!
f (α

!
)(α®α

!
)
(αδ f (αδ)®α

!
f (α

!
))

αδ®α
!

, (4.4)

where equality holds for α¯α
!
and α¯αδ. As illustrated in figure 6, (4.4) requires the
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drift flux curve, α f (α), always to be above the secant between α
!
and αδ, or otherwise

a positive diffusivity could never establish a flux balance in the corresponding shock
structure. (A more general and stringent derivation of (4.4) is given by Lax (1973.)
Owing to the presence of an inflection point on the drift flux curve, the shock
construction by N&A violates this requirement as indicated by the dashed line. We
found, however, another self-similar solution with which our computations also agree
quantitatively. Velocity and concentration profiles of the new similarity solution are
seen as the last in the series of curves (ξU¢) for the case shown in figure 3. This
solution was obtained by using a modified shock construction as given by a stability
requirement implicit in (4.4). In order for a kinematic shock to be an acceptable
solution it must be stable to imposed infinitesimal disturbances ; e.g. the shock must re-
establish itself if it is slightly disturbed into a steep, but continuous, profile. Usually the
flow through a shock is stable}evolutionary (see Landau & Lifshitz 1987, p. 10) if
infinitesimal disturbances propagate into the shock on both sides but such a
construction is not allowed here due to the inflection point in the drift flux curve α f (α),
the presence of which seems to be a general feature for a wide class of suggested
hindered-settling functions. (For a description of different types of kinematic
sedimentation waves see e.g. Wallis 1969, pp. 190–194.) Therefore, in addition to the
usual kinematic shock relations for conservation of matter across the shock we
imposed the condition (Wendroff 1972a, b)

αδ f (αδ)®α
!
f (α

!
)

αδ®α
!

®
d

dα
(α f (α)))

α=αδ

¯ 0, (4.5)

which follows as the only possible limit of (4.4) as αUαδ in this case. Physically this
means that imposed concentration disturbances, propagating as kinematic waves in the
immediate neighbourhood of the shock, will be stationary at the lower side of the
shock. On the other hand, a shock as constructed by N&A and similarly by K&A is
unstable to small disturbances and would be disintegrated by expansion waves at the
lower side of the shock. Their procedure is based on a regularity assumption for the
solution as the shock wave is approached from below. The momentum and particle
conservation equations may then be reduced to an algebraic equation for the variables
at the lower side of the shock which actually states that the wave speed there is negative
and away from the shock (equation (4.11) in N&A and equation (22) in K&A). As
shown in the Appendix their regularity assumption does not hold if (4.5) is imposed.
Graphically (4.5) states that the shock construction in figure 6 must be such that the
secant is tangent to the drift flux curve at α¯αδ whereas the regularity assumption
leads to a secant with larger negative slope than the drift flux curve at α¯αδ. More
details about the new self-similar solution are given in the Appendix where solutions
to the diffusive model problem are also discussed.

The existence or non-existence of the new modified self-similar solution for various
settings of the inclination angle and volume fraction α

!
gave qualitatively the same type

of result as that found by N&A for steady self-similar solutions. As shown in
figure 7, though, the curve above which self-similar steady-state solutions are available
is displaced upwards. The new boundary is given by error bars only since it was
determined from computations by the marching procedure like those in figure 4. (The
integration of the similarity form of the equations presented an ill-conditioned
iteration problem for the boundary layer thickness and two unknown parameter values
at the wall and therefore could not be used for the purpose of determining the new
curve in figure 7.) Note that this new curve represents the boundary between regions
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F 7. Curves above which self-similar solutions are available as given by N&A and by the
present theory for κ¯ 0 (error bars).

where self-similarity is approached and not approached for large values of ξ, rather
than a boundary between regions of steady and non-steady states. All our computations
(φ(Λ−"/$

L
) give steady results. Also, the shape of the boundary in figure 7 is of course

completely independent of the Brownian diffusivity and is not affected by the particular
model used for D(α).

One of the typical features for the case κ¯ 0 is that for very small volume fractions
of the suspension, α

!
, very large inclinations of the plate are required for the existence

of a self-similar approach for large ξ. One also finds that the boundary layer thickness
of the self-similar solution, when it exists, grows indefinitely as α

!
U 0 with a sediment

approaching maximum packing. However, in our case this anomaly for α
!
U 0 appears

only if, roughly, α
!
ξU¢ whereas if α

!
ξU 0 a steady solution is still available, i.e. at

a large but fixed value of ξ the limit of vanishing α
!

is unambiguous. From the
approximate expansion procedure, (3.14), one may deduce that the boundary layer
thickness is C (ξ}α

!
)"/&, which still grows for vanishing α

!
, but at the same time we

have for the mixture velocity and the volume fraction that

DR C ξ $/&α#/&
!

, DS Cα"/&
!

, α®α
!
C ξ "/&α%/&

!
, (4.6)

which imply that all these quantities approach zero if at least ξα#/$
!

U 0. The inclusion
of Brownian motion thereby relaxes somewhat the puzzling behaviour for vanishing
volume fraction.

In the second case, κ1 0, as particle migration due to shear stress is included in the
model, boundary layer profiles look qualitatively very much the same as for the first
case but with an important exception. The odd behaviour of the self-similar solution
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F 8. Region of available self-similar solutions for the case κ1 0 (error bars), the boundary for
maximum packing limit at the wall as given by (4.8) (– – –), and the lower limit for constant volume
fraction in the self-similar solution as given by (A 13) in the appendix (–[–[–).

for small volume fractions α
!

is not present. In this case, as is shown in figure 8, the
boundary for the parameter region of approach to self-similarity gives a finite value of
the inclination, φ! 90° as α

!
U 0, which was also found recently by K&A. Obviously,

particle migration due to shear stresses alone may counteract the accumulation of
particles in this limit. Investigating the particle flux balance at the wall, (4.1), in the case
κ1 0 we get

1

µ
e
(αrη=!

) (α(1®α)®*

#
tanφκ(α) (α®α

!
)

*

#
tanφβ(α)&

¢

!

(α®α
!
) dηαηξ−"/$µ

e
(α)D(α)αη*)

η=!

0, (4.7)

which for a balance only between the two first terms would require the slope

tanφ¯
2

9 (
α(1®α)

κ(α) (α®α
!
)*)η=! (4.8)

and where the limit for a self-similar solution to exist is obtained for maximum packing
at the wall α(η¯ 0)¯α

m
. This limit is shown, with α

m
¯ 0.58, as a dashed line in figure

8 which at α
!
¯ 0 gives φ¯ arctan ["!

#(
(1®α

m
)}α#

m
]¯ 24.8°, quite close to the

extrapolated true curve. In fact, a particularly simple form of the self-similar solution
is available for the case κ1 0. The volume fraction is then constant in the sediment
layer and so the first two terms of (4.7) balance each other exactly throughout the
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whole layer. This is possible since the shear stress-induced migration of particles, which
counteracts the settling in this case, is effectively of non-diffusive character in the
buoyancy-driven flow considered. Thus the dashed line in figure 8 would seem to be a
lower boundary for this type of similarity solution. As shown in the Appendix though,
a second criterion for this constant-volume fraction solution is given by a stability
condition analogous to that discussed above the case κ¯ 0, which yields a more
restrictive condition for this type of solution given by the dot-dashed line in figure 8.
Thus, in the region above the dot-dashed line of figure 8 the similarity solution
available constitutes a particle flux balance between settling and shear-stress-induced
migration only, whereas outside this region shear-induced diffusion is active as well.
Also, as shown in the Appendix, the boundary layer thickness of the self-similar
solution is finite and Cα"/$

!
for small α

!
if κ1 0. A comparison with the study of

K&A shows that similar to our case they find regions along the plate with different
characteristics and scaling laws. In their solution, particle slip at the wall is of major
importance close to the leading edge whereas far downstream slip is progressively
weaker. On the other hand, their steady-state solution is available, as in N&A, only
for certain combinations of φ and α

!
. In our solution Brownian diffusion is dominant

at the leading edge and becomes progressively less important far downstream except at
the boundary layer edge. For some values of φ and α

!
Brownian diffusion is also

dominant far downstream as the sediment near the wall is close to maximum packing.
Analogous to the case κ¯ 0 discussed previously this behaviour yields steady-state
solutions for the parameter regime that was not available for the model used by
K&A. Finally, the type of unstable shock construction used by N&A is also present
in K&A, implying that a possible unifying limit of non-Brownian particles from our
solution and particles without slip at the wall from the K&A solution would not give
exactly the same result.

5. Conclusions

We considered continuous, steady settling of Brownian particles on an inclined plate
and the accompanied buoyancy-driven motion of the accumulated sediment. Also
incorporated in the model was the diffusion of particles due to shear-induced
hydrodynamic interaction. It was found that at the beginning of the plate, within a
distance C a[3kT}(4πa$ ερ

C
ga cosφ)]$, Brownian motion is the dominating diffusion

mechanism and effectively counteracts packing of particles in the sludge layer. Further
downstream, where the sediment is thicker, shear-induced diffusion of particles may
gradually become the most dominant contribution. If the inclination of the plate is too
small though, the shear rate does not grow large enough to suspend the particles
through the whole sediment layer. Instead, in a region close to the wall, Brownian
motion of the particles prevents the packing from reaching its maximum at which,
otherwise, all motion would cease.

We were also able to resolve an issue raised by Nir & Acrivos (1990) who found that
no steady-state solution to this problem was available in the limit of vanishing volume
fraction, α

!
, above the sediment, since in their case the thickness of the sludge grows

indefinitely and the particle packing in the sediment approaches its maximum as α
!
U 0.

Here, with the additional effect of Brownian motion, this non-intuitive behaviour
did not appear if the limit of vanishing α

!
was considered for a finite fixed length of the

plate. Moreover, if the hydrodynamic particle interaction was complemented with a
model for particle migration due to gradients in shear stress, the limit α

!
U 0 gave

physically acceptable results even in the limits of vanishing Brownian motion.
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For the reconsidered problem of zero Brownian motion, we found that the shock
condition must be complemented with a requirement of zero kinematic-wave speed,
locally at the lower side of the shock, or this solution would not be the same as that
for the limit of vanishing Brownian diffusivity in our extended formulation. In fact, the
inclusion of an artificial Brownian diffusivity as a means of smoothing concentration
shocks is also justified because of the failure of the continuum approximation at a
length scale of the particle diameter. In this respect, it is a requisite of the non-
Brownian self-similar solution to be insensitive to the presence of a small non-zero
diffusivity.

In summary, the present theory allows a steady-state solution for any volume
fraction above the sediment and any choice of inclination angle much larger than
[ερ

C
ga%}kT ]#' 1. Essentially the same regions of parameter space as those given by

Nir & Acrivos (1990) and Kapoor & Acrivos (1995) for available steady states are in
our cases regions for which far downstream on the plate Brownian diffusion appears
negligible compared to shear-induced diffusion and particle migration due to shear
stress gradients.

I am much indebted to Professor H. P. Greenspan for drawing my attention to this
problem and for his valuable comments on the manuscript.

Appendix. The self-similar solution

The self-similar form of the equations is obtained in the limit ξU¢ for which all
ξ-derivatives are zero in equation (3.9). The governing equations are then

tanφ(α®α
!
)[µ

e
(α)F§]«¯ 0, (A 1)

®α«F¯ 9α f (α)®
9

2
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(α)

tanφ(α®α
!
):

«

*

#
[β(α)F§α«]«, (A 2)

where at the wall we have
F(0)¯F «(0)¯ 0, (A 3)
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e
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)*

#
β(α)F §α«*)

η=!

. (A 4)

In the self-similar case the sediment has a well-defined thickness, δ say, with edge
boundary conditions

F §(δ )¯ 0, α(δ )¯αδ, F(δ )¯Fδ. (A 5a–c)

The values of αδ and Fδ are determined by different procedures depending on the values
of α

!
and φ and we also consider the cases κ¯ 0 and κ1 0 separately.

For κ¯ 0 the sedimentation drift flux is just αf (α). This function has an inflection
point at α¯α

in
¯ 0.352. If α

!
!α

in
a kinematic shock in the volume fraction appears

at the edge of the sediment layer for which the conservation of particles across the
shock yields

αδ f(αδ )®α
!
f(α

!
)

αδ®α
!

¯®Fδ. (A 6)

Due to the inflection point of the drift flux curve the shock construction is
complemented by the tangent condition

αδ f (αδ )®α
!
f (α

!
)

αδ®α
!

¯
d

dα
(α f (α)))

α=αδ

, (A 7)

which must be applied whenever the shock tends to be disintegrated by expansion
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waves. In the case α
!
"α

in
, no shock appears and αδ ¯α

!
. An equation for Fδ is in this

case obtained by eliminating the rational expression between (A 6) and (A 7). The
position of the shock, δ, must for any α

!
be determined as a part of the integration

procedure.
Even though the form of (A 2) is not that of a kinematic wave equation, shocks may

still appear in the solution, for α
!
!α

in
, since the diffusivity approaches zero at the

edge of the sediment. Locally at the edge the particle flux balance is therefore similar
to a kinematic wave problem. To justify the use of (A 6) and (A 7), taken from
kinematic wave theory, we may investigate the particular behaviour of the solution
close to the shock and verify that a solution of this form exists. By an expansion of
(A 2) as ηU δ from below and using (A 6), (A 7) we obtain

α®αδ ¯
A

log (B}(δ®η))
, α«¯®

(α®αδ )#

(δ®η)A
, F §¯ (δ®η) (αδ®α

!
)
tanφ

µ(αδ )
, (A 8)

where A¯ *

#
β(αδ ) (αδ®α

!
)
tanφ

µ(αδ )

2

(d #}dα#) [α f (α)]α=αδ

, (A 9)

and B is a constant which can be determined by matching to the complete solution.
Thus, approached from below, the volume fraction of the self-similar solution has
infinite derivative at the edge of the sediment and, although the diffusive particle flux
approach zero at the shock, (A 2) shows an intricate balance involving all terms. The
assumption imposed by N&A and likewise by K&A that terms like (α«)#F§ and
α§F§ in (A 1), (A 2) vanish as the shock is approached from below is thus incorrect
and results in unstable shock constructions in their cases, as discussed in §4.

To confirm the asymptotic approach, for large ξ, of the full non-similar solution to
the self-similar one we found that extremely large values of ξ are required. In fact, it
was not practical any longer to use the marching procedure for the boundary layer. We
therefore solved (A 2) with a small constant artificial diffusivity, ν

art
, replacing the true

Brownian diffusivity. The equations are then still of self-similar form and no marching
is needed. Instead, the equations were solved for decreasing values of the artificial
diffusivity. A series of profiles from these calculations is shown in figure 9 together with
the self-similar solution for α

!
¯ 0.1, φ¯ 45°. The reason for the slow approach is due

to the logarithmic type of behaviour, (A 8), close to the shock. One may show that the
shock-structure solution for small artificial diffusivity has an approach to the outer
solution of the same form as (A 8) with BC ν

art
, which indicates that indeed the

solution varies slowly with ν
art

.
For the case κ1 0 similar arguments for the appearance of a kinematic shock hold

if the effective drift flux is replaced by the full expression in the first bracket of (A 2)
with κ(α) according to (2.11b). Characteristic for this case is that for some values of α

!
and φ a particularly simple form of the solution is available. The volume fraction is
then constant, α¯α

w
, through the whole sediment and determined from the boundary

condition at the wall (A 4) with α«¯ 0. With f (α) given explicitly by (2.9) this yields
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One may note here that any solution α
w
(φ,α

!
)1α

m
of (A 10) is independent of the

effective viscosity law used. The velocity profile is then integrated directly from (A 1):
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and the thickness of the sediment, δ, is determined from the shock condition (A 6)
using the modified drift flux expression discussed above:

δ¯ 9 3
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A prerequisite for this solution to hold is two-fold: α
w

is less than the maximum
packing limit α

m
; the shock construction is stable, i.e. the wave speed at the lower side

of the shock is positive
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e
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& 0. (A 13)

Both criteria give a restriction on the combined choice of φ and α
!
, explicitly obtained

from (4.8) with α¯α
m

and (A 13) respectively which are shown graphically in figure
8. The condition on the wave speed is seen to be the more restrictive one so that
(A 13) actually implies α

w
%α

m
. (The wave speed at the upper side of the shock of this

solution can be shown to be unconditionally negative as required.) Regarding the
particularly interesting limit of vanishing α

!
one may see that (A 13) is fulfilled if

α
!
%α

w
(φ, 0) (2®α

w
(φ, 0))}(1µ

e
(α

w
(φ, 0))), (A 14)

where α
w
(φ, 0)¯

1

5.4 tanφ
[(110.8 tanφ)"/#®1], φ& 24.8°. (A 15)

Thus, the existence of the self-similar solution for κ1 0 at small α
!
is confirmed by this

simple form of the solution.
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